131 research outputs found

    Mechanical properties of calvarial bones in a mouse model for craniosynostosis

    Get PDF
    The mammalian cranial vault largely consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Premature closure of the cranial sutures, craniosynostosis, can lead to serious clinical pathology unless there is surgical intervention. Research into the genetic basis of the disease has led to the development of various animal models that display this condition, e.g. mutant type Fgfr2C342Y/+ mice which display early fusion of the coronal suture (joining the parietal and frontal bones). However, whether the biomechanical properties of the mutant and wild type bones are affected has not been investigated before. Therefore, nanoindentation was used to compare the elastic modulus of cranial bone and sutures in wild type (WT) and Fgfr2C342Y/+mutant type (MT) mice during their postnatal development. Further, the variations in properties with indentation position and plane were assessed. No difference was observed in the elastic modulus of parietal bone between the WT and MT mice at postnatal (P) day 10 and 20. However, the modulus of frontal bone in the MT group was lower than the WT group at both P10 (1.39±0.30 vs. 5.32±0.68 GPa; p<0.05) and P20 (5.57±0.33 vs. 7.14±0.79 GPa; p<0.05). A wide range of values was measured along the coronal sutures for both the WT and MT samples, with no significant difference between the two groups. Findings of this study suggest that the inherent mechanical properties of the frontal bone in the mutant mice were different to the wild type mice from the same genetic background. These differences may reflect variations in the degree of biomechanical adaptation during skull growth, which could have implications for the surgical management of craniosynostosis patients

    Application of Far Cortical Locking Technology in Periprosthetic Femoral Fracture Fixation: A Biomechanical Study

    Get PDF
    © 2016 Elsevier Inc. Background Lack of fracture movement could be a potential cause of periprosthetic femoral fracture (PFF) fixation failures. This study aimed to test whether the use of distal far cortical locking screws reduces the overall stiffness of PFF fixations and allows an increase in fracture movement compared to standard locking screws while retaining the overall strength of the PFF fixations. Methods Twelve laboratory models of Vancouver type B1 PFFs were developed. In all specimens, the proximal screw fixations were similar, whereas in 6 specimens, distal locking screws were used, and in the other six specimens, far cortical locking screws. The overall stiffness, fracture movement, and pattern of strain distribution on the plate were measured in stable and unstable fractures under anatomic 1-legged stance. Specimens with unstable fracture were loaded to failure. Results No statistical difference was found between the stiffness and fracture movement of the two groups in stable fractures. In the unstable fractures, the overall stiffness and fracture movement of the locking group was significantly higher and lower than the far cortical group, respectively. Maximum principal strain on the plate was consistently lower in the far cortical group, and there was no significant difference between the failure loads of the 2 groups. Conclusion The results indicate that far cortical locking screws can reduce the overall effective stiffness of the locking plates and increase the fracture movement while maintaining the overall strength of the PFF fixation construct. However, in unstable fractures, alternative fixation methods, for example, long stem revision might be a better option

    On the mechanical aspect of additive manufactured polyether-ether-ketone scaffold for repair of large bone defects

    Get PDF
    Polyether-ether-ketone (PEEK) is widely used in producing prosthesis and have gained great attention for repair of large bone defect in recent years with the development of additive manufacturing. This is due to its excellent biocompatibility, good heat and chemical stability and similar mechanical properties which mimics natural bone. In this study, three replicates of rectilinear scaffolds were designed for compression, tension, three-point bending and torsion test with unit cell size of 0.8 mm, a pore size of 0.4 mm, strut thickness of 0.4 mm and nominal porosity of 50%. Stress-strain graphs were developed from experimental and finite element analysis models. Experimental Young’s modulus and yield strength of the scaffolds were measured from the slop of the stress-strain graph to be 395 and 19.50 MPa respectively for compression, 427 and 6.96 MPa respectively for tension, 257 and 25.30 MPa respectively for three-point bending and 231 and 12.83 MPa respectively for torsion test. The finite element model was found to be in good agreement with the experimental results. Ductile fracture of the struct subjected to tensile strain was the main failure mode of the PEEK scaffold, which stems from the low crystallinity of additive manufacturing PEEK. The mechanical properties of porous PEEK are close to those of cancellous bone and thus are expected to be used in additive manufacturing PEEK bone implants in the future, but the lower yield strength poses a design challenge

    Cloning and Expression of Randomly Mutated Bacillus subtilis α-Amylase Genes in HB101

    Get PDF
    The aim of this study was to isolate and express the randomly mutated α-amylase gene from B. subtilis strain 168. BS168F: 5â€Č-gtgtcaagaatgtttgc-3â€Č and BS168R: 3â€Č-gttttgttaaaagatga-5â€Č primers were used to amplify the amylase gene using the following cycle in error-prone PCR method: 94°C for 30 s, 40°C for 2 min, and 72°C for 2 min in 30 cycles that were followed with 72°C for 2 min as a post cycle. E. coli XL1 blue was used as host for plasmid construction. Amylase enzyme activity assay was performed using continuous spectrophotometric procedures. Results of sequencing showed that sequence was cloned from the first ATG and with the correct open reading frame. Having confirmed the integrity of the insert, the gene was ligated into expression vector pET-15b and then further confirmed using digestion analysis. Amylase activity showed 3 clones with higher enzymatic activity compared with the wild type. Error-prone PCR method produced a mutated gene that provides amylase activity much higher than that of wild type. Sequencing the mutated genes should shed light on the important region of the genes that could be manipulated in future studies

    Predicting calvarial growth in normal and craniosynostotic mice using a computational approach

    Get PDF
    © 2017 Anatomical Society During postnatal calvarial growth the brain grows gradually and the overlying bones and sutures accommodate that growth until the later juvenile stages. The whole process is coordinated through a complex series of biological, chemical and perhaps mechanical signals between various elements of the craniofacial system. The aim of this study was to investigate to what extent a computational model can accurately predict the calvarial growth in wild-type (WT) and mutant type (MT) Fgfr2 C342Y/+ mice displaying bicoronal suture fusion. A series of morphological studies were carried out to quantify the calvarial growth at P3, P10 and P20 in both mouse types. MicroCT images of a P3 specimen were used to develop a finite element model of skull growth to predict the calvarial shape of WT and MT mice at P10. Sensitivity tests were performed and the results compared with ex vivo P10 data. Although the mod els were sensitive to the choice of input parameters, they predicted the overall skull growth in the WT and MT mice. The models also captured the difference between the ex vivoWT and MT mice. This modelling approach has the potential to be translated to human skull growth and to enhance our understanding of the different reconstruction methods used to manage clinically the different forms of craniosynostosis, and in the long term possibly reduce the number of re-operations in children displaying this condition and thereby enhance their quality of life

    Joubert Syndrome in Three Children in A Family: A Case Series

    Get PDF
    AbstractHow to Cite This Article: Akhondian J, Ashrafzadeh F, Beiraghi Toosi M, MOazen N, Mohammadpoor T, Karimi R. Joubert Syndrome in Three Children in a family: A Case Series. Iran J Child Neurol. 2013 Winter: 7(1); 39-42. Joubert  syndrome  (JS)  is  a  rare  autosomal  recessive  central  nervous system malformation characterized by hypoplasia of the cerebellar vermis,hypotonia and abnormal psychomotor development, along with altered respiratory pattern and various ophthalmologic features.Here, we describe three children with Joubert syndrome in a family that had almost similar presentations, including ataxia, developmental delay, mental retardation and ocular disorders.Prevalence of Joubert syndrome is about 1 in 100,000 live birth. It may be accompanied by other organs’ disorders. The molar tooth sign is pathognomonic for joubert syndrome that is ascertained by brain MRI. References1. Ahmed J, Ali US. Joubert syndrome with nephronophthisis in neurofibromatosis type 1. Saudi J Kidney Dis Transpl 2011;22(4):788-91.2. Singh P, Goraya JS, Saggar K, Ahluwalia A. A report of Joubert syndrome in an infant, with literature review. J Pediatr Neurosci 2011;6(1):44-7.3. Brancati F, Dallapiccola B, Valente EM. Joubert Syndrome and related disorders. Orphanet J Rare Dis 2010;5:20.4. Malaki M, Nemati M, Shoaran M. Joubert syndrome presenting as unilateral dysplastic kidney, hypotonia, and respiratory problem. Saudi J Kidney Dis Transpl 201;23(2):325-9.5. Louie CM, Gleeson JG. Genetic basis of Joubert syndrome and related disorders of cerebellar development. Hum Mol Genet 2005; 15;14 Spec No. 2:R235-42.6. Gill H, Muthusamy B, Atan D, Williams C, Ellis M. Joubert syndrome presenting with motor delay and oculomotor apraxia. Case Rep Pediatr 2011;2011:262641.7. Duldulao NA, Lee S, Sun Z. Cilia localization is essential for in vivo functions of the Joubert syndrome protein Arl13b/Scorpion. Development 2009;136(23):4033-42.8. Parisi MA. Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet. 2009;15;151C(4):326-40.9. Castori M, Valente EM, Donati MA, Salvi S, Fazzi E, Procopio E, et al. NPHP1 gene deletion is a rare cause of Joubert syndrome related disorders. J Med Genet 2005;42(2):e9.10. Maria BL, Hoang KB, Tusa RJ, Mancuso AA, Hamed LM, Quisling RG, et al. “Joubert syndrome” revisited: key ocular motor signs with magnetic resonance imaging correlation. J Child Neurol 1997;12(7):423–30.

    Characterizing and Modeling Bone Formation during Mouse Calvarial Development

    Get PDF
    © 2019 American Physical Society. The newborn mammalian cranial vault consists of five flat bones that are joined together along their edges by soft fibrous tissues called sutures. Early fusion of these sutures leads to a medical condition known as craniosynostosis. The mechanobiology of normal and craniosynostotic skull growth is not well understood. In a series of previous studies, we characterized and modeled radial expansion of normal and craniosynostotic (Crouzon) mice. Here, we describe a new modeling algorithm to simulate bone formation at the sutures in normal and craniosynostotic mice. Our results demonstrate that our modeling approach is capable of predicting the observed ex vivo pattern of bone formation at the sutures in the aforementioned mice. The same approach can be used to model different calvarial reconstruction in children with craniosynostosis to assist in the management of this complex condition

    The growth of the buccal mass in Sepia officinalis: functional changes throughout ontogeny

    Get PDF
    Due to their small size, juveniles are more likely to show lower absolute levels of performance leading to a potential competitive disadvantage compared to adults. Therefore, juveniles are expected to compensate by showing a higher relative performance, and/or partitioning resources to overcome this performance disadvantage. Here, we investigate the link between ontogeny and feeding performance in the common cuttlefish Sepia officinalis. We explore the changes in beak shape, wear pattern, mechanical properties, muscular anatomy, and bite force during growth from 3-month post hatching to adults. We show that both upper and lower beaks present important ontogenetic shape variation in the rostrum area that might be due to wear induced by feeding. The mechanical properties of the beaks in juveniles indicate greater resistance compared to adults. Tanning observed on the beaks provides reinforcement to areas under high load during biting. In addition, muscle development and relative bite force were found to differ between cuttlefish of different ages, resulting in juveniles having a similar bite force for their size but with a muscular advantage for opening. Finally, an isometric relation is found in the bite force of S. officinalis, with no sign of feeding performance compensation in juveniles. Feeding performance thus does not reflect the ontogenetic shift from a crustacean-based diet in juveniles to a fish-based diet in adults

    Mechanical assessment of novel compliant mechanisms for underactuated prosthetic hands

    Get PDF
    This paper proposes novel compliant mechanisms for constructing hand prostheses based on soft robotics. Two models of prosthetic hands are developed in this work. Three mechanical evaluations are performed to determine the suitability of the two designs for carrying out activities of daily living (ADLs). The first test measures the grip force that the prosthesis can generate on objects. The second determines the energy required and dissipated from the prosthesis to operate. The third test identifies the maximum traction force that the prosthesis can support. The tests showed that the PrHand1 prosthesis has a maximum grip force of 23.38 ± 1.5 N, the required energy is 0.76 ± 0.13 J, and the dissipated energy is 0.21 ± 0.17 J. It supports a traction force of 173.31 ± 5.7 N. The PrHand2 prosthesis has a maximum grip force of 36.13 ± 2.3 N, the required energy is 1.28 ± 0.13 J, the dissipated energy is 0.96 ± 0.12 J, and it supports a traction force of 78.48 ± 0 N. In conclusion, the PrHand1 prosthesis has a better performance in terms of energy and tensile force supported. The difference between the energy and traction force results is related to two design features of the PrHand2: fully silicone-coated fingers and a unifying mechanism that requires more force on the tendons to close the prosthesis. The grip force of the PrHand2 prosthesis was more robust than the PrHand1 due to its silicone coating, which allowed for an improved grip
    • 

    corecore